在汽车的发展当中,新材料的应用不可或缺,从最开始的金属车身结构、发展到现在的碳纤维复合材料车身结构,都展现着材料的变化。今天我们就来看看有这些在汽车以及整个行业当中所应用的新材料有哪些。
历史由来
1974年的某一天,日本松下电器产业中央研究所的研究人员,把钛-锰合金和氢气一起装入容器后,惊奇地发现氢气的压力居然从1013.325kPa降到101.325kPa,所减少的氢气是被钛一锰合金“吃掉”了,而且“胃口”相当大,被钛一锰合金吃进的氢气要比它本身大1000至3000倍。由于这种合金在一定温度和压力下,会像海绵吸水那样大量吸氢,故称为“贮氢合金”或“氢海绵”。
研究进展
已研制成功多种贮氢合金,如TiFe、ZrMn 、LaNi 等,它们既可储存氢气,也可放出氢气。研究人员还研制用贮氢合金净化或提纯氢;设想把贮氢合金引入汽车和厨房设备作为氢燃料,既环保又高效。
应用领域
氢动力电池车氢气的贮存、净化和回收、氢燃料发动机、热—压传感器和热液激励器、氢同位素分离和核反应堆中的应用、空调、热泵及热贮存、加氢及脱氢反应催化剂、氢化物—镍电池。
历史由来
2004年,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。因此,两人在2010年获得诺贝尔物理学奖。
研究进展
石墨烯是目前世界上最薄且最坚硬的纳米材料,它几乎完全透明,只吸收2.3%的光,导热系数高达5300 W/m·K(高于碳纳米管),常温下电子迁移率超过15000cm2/V·s(高于碳纳米管和硅晶体),电阻率只有10-6 Ω·cm,为目前世界上电阻率最小的材料,未来将在超多领域引发颠覆性的技术产业革命。
应用领域
未来5年将在汽车电池、光电显示、半导体、触摸屏、电子器件、储能电池、显示器、传感器、半导体、航天、复合材料、生物医药等领域将爆发式增长。
历史由来
OLED的研究产生起源于一个偶然的发现。1979年的一天晚上,在 Kodak公司从事科研工作的华裔科学家邓青云博士(Dr.C.W.Tang)在回家的路上忽然想起有东西忘记在实验室里,回去以后,他发现黑暗中有个亮的东西。打开灯发现原来是一块做实验的有机蓄电池在发光。这是怎么回事?OLED研究就此开始,邓博士由此也被称为OLED之父。
研究进展
OLED的产品已从试验室走向了市场。从1997~l999年,OLED显示器的惟一市场是在车载显示器上,2000年以后,产品的应用范围逐渐扩大到手机显示屏。OLED在手机上的应用又极大地推动其技术的进一步发展和应用范围的迅速扩大,对现有的LCD、LED和VFD提出强有力的挑战。
应用领域
汽车显示屏、3G通讯领域、柔软显示器多种领域。
历史由来
1911年,荷兰物理学家昂纳斯在研究金属汞的低温性时,发现在4K时水银的电阻骤然降到一个很小的数值(10),当他在水银中加入大量杂质后,对其在液氦温度下向极小电阻状态转变并没有发生什么影响。这表明在低温下某些固体电阻趋于零是这些固体固有的物理性质。通过实验发现了某些固体在低温下电阻接近于零。电流在这些固体中流动时就没有阻力,不耗损电能。昂纳斯于1913年首次称这种状态为超导态,因此昂纳斯教授获得了1913年诺贝尔物理学奖。人们把这种零电阻现象叫做超导现象,把具有超导性的物质叫做超导材料。
研究进展
目前已相继发现28种(金属元素或单质)具有超导性,如锆、钼、铌等;超导化合物和超导合金有几千种,如镧钡铜氧化物、铌锗合金等。
应用领域
汽车领域、超导计算机、超导磁悬浮列车、超导电车、电磁推进船、超导电缆、超导发动机以及无损耗变压器。
5、超塑性合金
历史由来
1920年德国研究人员罗森海因在对锌一铝一铜合金进行研究时,发现这种合金与一般金属不同,经过冷轧后,具有暂时的很高的塑性。当时被工程技术界认为是一种奇异现象。1945年前苏联学者包奇瓦尔,对这一奇异现象深入探究,并在许多有色金属合金中,发现了延展性特别显著的奇异现象。
研究进展
目前,世界上已经发现200多种超塑性合金,如超塑铜合金(Cu一38Zn)、超塑锌合金(Zn一22Al一0.2Cu)、超塑铝合金(A1—6Cu—Zr)等。
应用领域
用于制造汽车、人造卫星的复杂器件、电子仪器零件、汽车外壳等。
历史由来
20世纪50年代初,英国人在研究合金时,无意将含有80锰的锰一铜合金铸块掉在地上,实验人员只听到微弱的声响,出乎意料的现象引起他们的极大兴趣,对其进行了深入的研究,终于获得了具有减振特性的锰~铜一铝一铁一镍合金,并称它为“无声合金”或“减振合金”。
研究进展
现已有数十种减振合金问世,如钴镍合金、镁锆合金、镍钛合金和铁锆铝合金。
应用领域
汽车制造、宇宙航天、土木建筑、机械制造、火车车轮、家用电器等。
历史由来
1958年,美国一实验室冶金师布勒在研究镍一钛合金时意外发现,在不同温度下镍一钛合金棒相碰撞发出清脆的声音,而冷却到室温后,则发出喑哑迟钝的声音。他敏锐地意识到,温度对合金的组织结构和硬度可能有很大影响。I963年,在一次实验中,他从库房中领取了弯弯曲曲的镍一钛合金丝,使用起来不方便,所以实验前把这些合金丝一根根拉直,然后做实验。令人惊异的怪现象出现了,实验温度升高到一定值时,这些原来拉直的合金丝突然无一例外地全部变成弯弯曲曲的形状。反复实验结果相同。他们还发现不论把镍一钛合金丝拉得多么直,当温度达到某一数值,即转变温度时,就会恢复原来的弯曲形状。科学家把这种现象称为形状记忆效应,具有这种效应的合金称为形状记忆合金,简称“记忆合金”。
研究进展
科学家在镍-钛合金中添加其他元素,进一步研究开发了钦镍铜、钛镍铁、钛镍铬等新的镍钛系形状记忆合金;除此以外还有其他种类的形状记忆合金,如:铜镍系合金、铜铝系合金、铜锌系合金、铁系合金(Fe-Mn-Si,Fe-Pd)等。
应用领域
汽车制造、生物工程、医药、能源和自动化等方面也都有广阔的应用前景。
历史由来
1970年的一天,日本筑波大学的白川英树教授让他的一位朝鲜籍研究生用乙炔制取聚乙炔。由于这位学生日语不太好,听错了导师对实验中应加催化剂量的要求,结果加入了应使用催化剂用量的近100倍,然而这一错误竟带来了奇迹,得到了一种银光闪闪的薄膜,有一点导电性,很像金属。实际上聚乙炔应该是一种黑色的粉末。由于白川英树教授深知个人的力量不足以解决许多边缘问题,公开声明愿与各行各业的科学家合作。1977年白川英树在与美国宾夕法尼亚大学的物理教授麦克第阿密特研究这种塑料薄膜时又发现,若在乙炔的聚合过程中掺入碘,所得的聚乙炔呈金黄色,导电能力提高了3千万倍。
研究进展
前联邦德国的纳尔曼教授用白川英树催化剂体系获得聚乙炔后,立即进行特殊的熟化和拉伸取向处理,再给聚乙炔薄膜掺杂,结果得到的材料比掺碘的电导率又提高了3个数量级。纳尔曼的聚乙炔导电能力与铜相近了。现已用导电聚合物制成发光二级管,还在传感器、电磁屏蔽、催化等方面大显身手。
应用领域
抗静电添加剂、计算机抗电磁屏幕、智能窗、发光二极管、太阳能电池、移动电话、微型电视屏幕乃至生命科学研究等领域。
历史由来
1959年,美国加州理工大学的Duwez在研究晶体结构和化合价极其不同的两个元素能否形成固溶体时,偶然发现了这种新材料。他将高温金—硅合金熔体喷射到高速旋转的铜辊上,以每秒一百万度的冷却速度快速冷却熔体,第一次制备了不透亮的玻璃。当时的一位物理学家看到这种材料时,曾嘲讽地说这是一种“愚蠢的合金”。
研究进展
金属玻璃是迄今为止最强的金属材料和最软的金属材料之一,最强的钴基金属玻璃的强度达到创纪录的6.0GPa,最软的锶基金属玻璃的强度低至300MPa。
应用领域
汽车制造、航天方面,现在卫星收集太阳能维持运转的伸展机构。电压变压器芯体;手表表壳、高档手机、手提电脑外壳,以及在汽车重要部件上的应用。
历史由来
开发者 Jeannette Garcia正在开发另一种塑料,突然间容器里的溶剂变硬了。最后她将容器用铁锤砸破,但那个神秘的材料竟然没有损坏。她不知道如何复制这种塑料,所以她加入了IBM的计算机化学小组,并用IBM的超级电脑反推制备过程,最终得到了反应机制,这种塑料叫做PHT。
研究进展
这是一种全新的塑料,或者更准确地说是一种聚合物,其硬度强于骨骼,重量与同体积普通塑料类似,具备重新塑形的能力,并且100%可回收再利用。
应用领域
新聚合物材料潜在用途极为广泛,在汽车制造、航空航天、半导体等行业。
历史由来
1938年化学家罗伊·普朗克特本希望能生成一种新型碳氟化合物,他返回实验室,查看他在冷冻室里进行的一项试验。他检查一个本应该充满气体的容器,结果发现气体都已消失了,仅在容器壁上留下一些白点。普朗克特对这些神秘的化学物非常感兴趣,又开始重新做实验。最终这种新物质被证实是一种奇特的润滑剂,熔点极高。现在这种物质被广泛应用在不粘锅上。
研究进展
以成功研制一系列聚四氟乙烯不粘涂料,广泛用作耐高低温、耐腐蚀材料,绝缘材料,防粘涂层等。
应用领域
汽车密封圈、轴承、仪器、仪表、建筑、纺织、金属表面处理等。
12、不锈钢
历史由来
在第一次世界大战时期,一位金属专家受命研究在射击过一段时间以后因发生“锈斑”而损坏的问题。在研究中他采用几种新型合金钢的含铬量很高,在开了第一枪后就成了碎片。碎片被扔进了废料堆,过了一两个星期,这位专家注意到,在那些生锈的废金属片中,那根铬钢的碎片仍然像原来一样,闪闪发亮。“不锈钢”的巨大优点就是从这个偶然中发现出来的。
研究进展
目前有一百多种工业不锈钢,所开发的每种不锈钢都在其特定的应用领域具有良好的性能。
应用领域
汽车制造、建筑应用、食品加工、餐饮、酿造和化工领域。
历史由来
1906年德国科学家威尔姆打算观察热处理对一种含铜3.5%,镁0.5%的铝合金的影响。但处理后的合金并不如所希望的那样硬化。他把合金随手扔在了一边。但几天后他怀疑自己的试验,于是决定重做一遍。结果他吃惊地发现几天前处理过的合金的强度和硬度已经大大增强。他因此而发现时效硬化现象,并制得硬铝。
研究进展
热处理可强化铝合金,包括铝-铜-镁系和铝-铜-锰系合金。这类合金强度和耐热性能均好,但耐蚀性不如纯铝和防锈铝合金。铝-铜-镁系中添加铁和镍,可发展为锻造合金,有良好的高温强度和工艺性能。铝-铜-锰系合金的工艺性能良好,易于焊接,主要用于耐热可焊的结构材料和锻件。
应用领域
该类合金广泛应用于各种构件和铆钉材料。在汽车、造船、建筑等部门也大量应用。
14、纳米材料
历史由来
1980年的一天,德国物理学家格莱特(grant)到澳大利亚旅游,当他独自驾车横穿澳大利亚的大沙漠时,空旷、寂寞和孤独的环境反而使他的思维特别活跃和敏锐。他长期从事晶体材料的研究,了解晶体的晶粒大小对材料的性能有很大的影响,晶粒越小,强度就越高。格莱特上面的设想只是材料的一般规律,他的想法一步一步地深入,如果组成材料的晶体的晶粒细到只有几个纳米大小,材料会是个什么样子呢?或许会发生“翻天覆地”的变化吧!格莱特带着这些想法回国后,立即开始试验,经过将近4年的努力,终于在1984年制得了只有几个纳米大小的超细粉末,包括各种金属、无机化合物和有机化合物的超细粉末。
研究进展
纳米技术基础理论研究和新材料开发等应用研究都得到了快速的发展,在产业化发展方面,除了纳米粉体材料在美国、日本、中国等少数几个国家初步实现规模生产外,纳米生物材料、纳米电子器件材料、纳米医疗诊断材料等产品仍处于开发研制阶段。
应用领域
汽车制造、传统材料、医疗器材、电子设备、涂料等。
15、不碎玻璃
历史由来
1903年的一天,法国化学家贝内迪克蒂斯做完了实验,在清扫实验室时,不慎将1支平底烧瓶从3m高的仪器架上碰落下来,掉到地面上并没有摔碎,只是布满了裂纹。因忙于其他实验,给这只烧瓶贴上纸条放在墙角。不久,贝内迪克蒂斯在报纸上看到一则车祸消息:一辆公共汽车撞在建筑物上,车窗玻璃的碎片击伤了司机和乘客。记者呼吁急需研制一种碎了也不伤人的车窗玻璃。于是,贝内迪克蒂斯立即拿出放在墙角贴有纸条的烧瓶着手研究。他发现这是一只装过硝化纤维溶液的烧瓶,瓶壁上有一层胶膜,所以没有跌碎。由此,他深受启发,联想到让胶膜和玻璃“紧密结合”,研制出了一种新型的“夹层玻璃”。
研究进展
目前已成功开发多种夹层玻璃。根据中间所夹材料不同,可分为:夹纸、夹布、夹植物、夹丝、夹绢、夹金属丝等众多种类;根据夹层间的粘接方法不同,可分为:混法夹层玻璃、干法夹层玻璃、中空夹层玻璃;根据夹层的层类不同,可分为:一般夹层玻璃和防弹玻璃。
应用领域
汽车挡风玻璃、航空挡风玻璃、建筑玻璃。
来源:前沿材料、新材料在线
免责声明:所载内容来源于互联网,微信公众号等公开渠道,我们对文中观点持中立态度,本文仅供参考、交流。转载的稿件版权归原作者和机构所有,如有侵权,请联系我们删除。
声明: 本文图片来源于版权方,任何网站、报刊、电视台、公司、组织、个人未经版权方许可,不得部分或全部使用。
汽车制造是一个复杂的工程项目,涉及到多个工艺和技术的整合。通常来讲,冲压、焊接、涂装和总装 是汽车主机厂典型的四大工艺过程。19张动图详解现代造车。
1
冲压车间 (Stamping Shop)
大型冲压机将金属板料冲压成汽车的各种外部和内部结构部件,如车门、车顶、侧板等。
冲压设备、冲压模具与冲压板材是冲压技术的核心,其中冲压板材作为车身的骨架和覆盖件,多采用低碳钢冲压而成,具有深拉延时不易产生裂纹的特点,其制造过程中对温度的监测非常重要。
工艺测试要点:
电机振动检测与轴对中调整温度监控供电质量及能耗检测2
焊接车间 (Welding Shop)
将冲压好的金属部件焊接成车身的骨架,通常使用机器人自动焊接技术来提高生产效率和焊接质量。
工艺测试要点:
电控柜电能质量测试用电设备绝缘性能测试机器人手臂信号测试工业以太网:生产线通讯故障诊断/ 产线验收3
涂装车间 (Paint Shop)
涂装车间负责对车身进行底漆、面漆和清漆的涂装工作。这个过程不仅增加汽车的美观和光泽,还提供了防腐蚀和抗磨损的保护层。
工艺测试要点:
涂装烘炉温度均匀性监测现场压力、温度变送器校准供电质量及能耗检测气体质量流量控制器校准4
总装车间 (Assembly Shop)
各种机械部件(如发动机、传动系统)、电气系统、内饰和其他配件被安装到车身上。这是整个制造过程中最复杂的部分,需要精确的工艺和严格的质量控制。
工艺测试要点:
汽车点火信号测试供电质量及能耗检测工业以太网:生产线通讯故障诊断/产线验收电池组 是新能源汽车的能量来源,其装配过程需要特别小心,以确保电池的安全性和稳定性。这包括电池单体的组装、电池模块的连接以及整个电池组的固定和布线等步骤。
汽车制造的每一步甚至每一个零件都直接影响整车的质量、性能以及驾驶安全性,因此每一个制造环节都需要进行严格的检测和测试,福禄克助力汽车制造过程各种设备运维检测,为安全驾驶保驾护航。
相关问答
汽车 工业与 汽车 零部件工业什么区别?汽车工业一般是指汽车整体研发,开发。比如某某车型、轿车、越野、超跑什么的。汽车零部件工业是机械加工的一个部份,特指汽车配件生产,加工,这部份出了机械加...
宝马原厂 配件 的代工品牌大汇总(新版) - 汽车维修 技术网[回答]之前发布了一个宝马原厂配件的代工品牌汇总的版本,当时只收录了15类宝马原厂零部件的代工品牌,经过粉丝的分享,还有近期查看资料信息的收集,又知道...
小型 汽车 零部件加工厂需要哪些设备?小型汽车零部件加工厂需要的主要设备如下:1、发动机零部件:发动机总成、活塞连杆组、曲轴飞轮组、机体组、泵、进排气系统、发动机悬架、配气机构、润滑系统...
汽车配件 分为原厂、正厂、下线、品牌、副厂等配件,你是否认识?我跟4s店员工聊天,可以负责任的和你说,4s店里大部分的配件都是正厂的(不是原厂)其中有小部分是副厂件,当配件缺货的时候会用副厂件顶上去。原厂件只有厂家造...
汽车 上有哪些重要的构件是由锻件制作的?这些都是汽车上关系到行车安全的关键部位,所以对零件的工艺及安全系数要求很高。那这些零件为什么用锻件而不去铸造或用其它方法成型呢?这里先了解一下锻造工艺...
汽车 故障产生的原因和变化规律 - 汽车维修 技术网[回答]汽车故障产生的原因零件失效是汽车故障产生的主要原因,除此之外,一些人为因素如设计上的缺陷,制造、维修及配件、燃润料质量,非正常维护与使用等均...
德国大众车里,有哪些零件是日本制造?不管你是奔驰、宝马、奥迪还是保时捷,尤其是电子控制元件、电子控制模块以及自动变速器三大关键零部件,全球几乎都被日本垄断。中国汽车尤其依赖日本零配件,...
做 汽车配件 利润大吗?修理厂配件利润在50%左右,一般都是在配件进价基础上乘以1.5。搞完了再加工时费。我说的这个是县级城市修理厂。如果是市级城市的话加的会更多,4S店不用说了,暴...
汽车 的零件都是制造商自己 生产 的吗? 汽车 的零?一般是厂家出设计和要求,由汽配公司来完成生产。包括开关啊,轮毂这些。不过汽车的吧钣金一般都是自己生产的,有冲压生产线。有些公司还有自己的发动机制造厂等...
汽车配件 厂都有什么工作?汽车配件厂主要是做汽车饰件、泡沫塑料、搪塑制品的制造,汽车零配件、轨道交通设备、机电产品、金属材料、化工原料(除危险化学品、监控化学品、烟花爆竹、民...